//基本的向上构造
#include <iostream>
using namespace std;class A{ public: void myfunc(){ cout << "A myfunc" << endl; } virtual void mytest(){ cout << "A mytest" << endl; }};class B:public A{ public: void myfunc(){ cout << "B myfunc" << endl; } virtual void mytest(){ cout << "B mytest" << endl; }};int main(void){ A* pa = new A(); B* pb = new B(); pa = pb;//向上转型,隐式的,是安全的(pb = static_cast<B*>(pa)是向下转型,不安全的.) pb->myfunc();//B myfunc pb->mytest();//B mytest pa->myfunc();//A myfuncpa->mytest();//B mytest 向上转型达到,多态的目的.
return 0;
}
//向上转型+虚函数#includeusing namespace std;class Integer{public: Integer(int r):m_r(r){} virtual Integer& operator+=(const Integer& that){//虚函数可以为拷贝构造函数. m_r +=that.m_r; return *this; } int m_r;};class Complex:public Integer{public: Complex(int r,int i):Integer(r),m_i(i){} Complex& operator+=(const Integer& c){//这里向上转型,这样 //形参既可以接受Integer也可以接受Complex类型的参数. Integer::operator+=(c); m_i += ((const Complex&)c).m_i;//这里是重点,c有可能是const Integer&类型的 //所以强制转换,是可行的. } int m_i;};int main(void){ Complex c1(1,2),c2(3,4); c1 += c2; cout << c1.m_r << '+' << c1.m_i << 'i' << endl; Integer& i1 = c1; // 4+6i; Integer& i2 = c2;//3+4i; i1+=i2;//i1调用子类Complex的拷贝赋值函数. cout << c1.m_r << '+' << c1.m_i << 'i' << endl;//7+10i; return 0;}